Question Bank No: 2

1. The complex number Z which satisfy |Z|<2 are

 a)on the x axis
 b)inside the circle with radius 2 and centre at origin
 c)on the circle with radius 2 and centre at origin
 d)none of these

2. The number of non zero integral solution of the equation |1i|x=2x is

 a)infinite
 b)1
 c)2
 d)none of these

3. If Z is a complex number then |Z+1|=3|Z1| represent

 a)straight line
 b)Ellipse
 c)Hyperbola
 d)Circle

4. If Z is a complex number then |3Z1|=3|Z2| represents

 a)straight line
 b)Ellipse
 c)Hyperbola
 d)Circle

5. The number (1+i)n(1+i)n2 is equal to

 a)4in2
 b)2in4
 c)2in1
 d)none of these

6(1+i)2n+(1i)2n, nNis

 a)purely imaginary
 b)a purely real number
 c)a non real complex number
 d)a complex number in which real and imaginary parts are equal

7. The complex number Z= x+iy which satisfy the equation |Z+1| lies on

 a)x- axis
 b)a circle with (-1,0) as center and radius 1
 c)y- axis
 d)none of these

8. The smallest positive integer n for which

8 ( 1 + i 1 i ) n = 1 is

 a)n=8
 b)n=12
 c)n=16
 d)none of these

9. The cube root of unity are 1,ω,ω2 then the roots of the equation (x1)3=8=0are

 a)-1,-1,-1
 b)-1,1+2ω,1+2ω2
 c)-1,1-2ω,12ω2
 d)1,1+2ω,1+2ω2

10. The points Z1,Z2,Z3,Z4 in a complex plane are the vertices of a parallelogram taken in order, then

 a)Z1+Z4=Z2+Z3
 b)Z1+Z3=Z2+Z4
 c)Z1+Z2=Z3+Z4
 d)Z1Z4=Z3Z4

11. If n is any positive integer, thewn the value of i4n=1i4n12 is equals

 a)1
 b)-1
 c)I
 d)-I

12. If α is a complex number such that α2+α+1=0 then α31 is

 a)α
 b)α2
 c)0
 d)1

13. If n = 4m+3, m is an intergral, then in is equal to

 a)I
 b)-I
 c)-1
 d)1

14. Arg Z +ArgZ¯ (Z0)is

 a)0
 b)π
 c)π2
 d)none of these

15. If n is an integral then in is

 a)I
 b)1,-1
 c)i,-I
 d)1,-1,i,-I

16. If xn=cos (π2n)+i sin(π2n), then x1,x2, x3,------is

 a)-I
 b)-1
 c)I
 d)1

17(1+i)6+(1i)6 is

 a)0
 b)27
 c)26
 d)None of these

18. The conjugate of 12+i is

 a)2+i5
 b)2i5
 c)52i
 d)52+i

19. The principal value of the argument of 1+i is

 a)π2
 b)π3
 c)π4
 d)none of these

20. If ω is a complex cube root of unity, then the value a+bω+cω2c+aω+bω2+a+bω+cω2b+cω+aω2?

 a)1
 b)0
 c)-1
 d)2

21. If |z+4|3, then the maximum value of |z+1| is

 a)10
 b)6
 c)0
 d)4

22. If |z| = 1 and z±1, then all the values of z1z2lie on

 a)a line not passing through the origin
 b)|z|=2
 c)the x- axis
 d)the y- axis

23. A man walks a distance of 3 units from the origin towards the north- east (N45E) direction. From there he walks a distance of 4 units towards the north- west (N 45W) direction to reach a point P. Then the position of P in the Argand plane is

 a)3eiπ4+4i
 b)(34i)eiπ4
 c)(4+3i)eiπ4
 d)(3+4i)eiπ4

24. If z2+z+1= 0 , then r=16(zr+1zr)2=

 a)6
 b)12
 c)18
 d)24

25. The value of k=110(sin2kπ11+icos2kπ11) is

 a)-1
 b)-I
 c)I
 d)1

26. If w = α+iβ, where β0 and z1 such that ww¯z1z is real, then

 a)|z|=1
 b)z=z¯
 c)z=z¯
 d)z=0

27. If x is a complex root of the equation | 1 x x x 1 x x x 1 | + |1x1111x1111x| = 0 , then x2005+1x2005=

 a)1
 b)-1
 c)I
 d)w

28. If w = zzi3 and |w| = 1, then z lies on

 a)a circle
 b)an ellipse
 c)a parabola
 d)a straight line

29. If the cube roots of unity are 1, w, w2, then the roots of the equation (x1)3+8=0 are

 a)-1 , -1, -1
 b)-1, -1+2w, -1 - 2w2
 c)-1, 1+2w, 1+ 2w2
 d)-1, 1 - 2w, 1 - 2w2

30. If |z21|=|z|2+1, then z lies on

 a)the real axis
 b)an ellipse
 c)a circle
 d)the imaginary axis

31. If z=xiy and z13=p+iq, then (xp+yq)÷(p2+q2)=

 a)1
 b)-2
 c)2
 d)-1

32. Let z, w be complex numbers such that z¯+iw¯=0 and arg(zw) = π. Then argz =

 a)π4
 b)5π4
 c)3π4
 d)π2

33. If 1, w, w2 are the cube roots of unity, then | 1 w n w 2 n w n w 2 n 1 w 2 n 1 w n | =

 a)0
 b)1
 c)w
 d)w2

34. If (1+i1i)x=1, then x =

 a)4n
 b)2n
 c)4n + 1
 d)2n + 1

35. If z and w are non -zerocomplex numbers such that |zw|=1 and argzargw =π2, then z¯w is

 a)1
 b)-1
 c)I
 d)-I

36. Let z1and z2 be the roots of z2+az+b=0. If the origin, z1and z2 form an equilateral triangle, then

 a)a2=b
 b)a2=2b
 c)a2=3b
 d)a2=4b

37. The locus of the centre of a circle which touches the circle |zz1|=a and |zz2|=b externally is

 a)an ellipse
 b)a hyperbola
 c)circle
 d)none

38. z and w are two non- zero complex numbers such that |z| = |w| and arg z +arg w = π , then z =

 a)w¯
 b)w¯
 c)w
 d)-w

39. The locus of z which lies in shaded region is represented by

 a)z:|z+1|>2 , |arg(z+1)| <π4
 b)z:|z1|>2 , |arg(z1)| <π4
 c)z:|z+1| <2 , |arg(z+1)| <π2
 d)z:|z1| <2 , |arg(z1)| <π2

40. If a, b, c are integers not all equal and ω is a cube root of unity (ω1), then the minimum value of |a+bω+cω2| is

 a)0
 b)1
 c)32
 d)12

41. If ω (1) be a cube root of unity and (1+ω2)n=(1+ω4)n, the least positive value of n is

 a)2
 b)3
 c)5
 d)6

42. If z is a complex number such that |z|=1, z 1, then the real part of z1z+1 is

 a)1|z+1|2
 b)1|z+1|2
 c)2|z+1|2
 d)0

43. The value of the determinant | 1 1 1 1 1 ω 2 ω 2 1 ω 2 ω 4 | is

 a)3ω
 b)3ω(ω1)
 c)3ω2
 d)3ω(1ω)

44. For all complex numbers z1, z2 satisfying |z1|=12and |z234i| = 5, the minimum value of |z1z2| is

 a)0
 b)2
 c)7
 d)17

45. If a, b, c and u, v, w are complex numbers representing the vertices of two triangles such that c = ( 1 r ) a + r b , w=(1r)u+rv, where r is a complex number, then the two triangles

 a)have the same area
 b)are similar
 c)are congruent
 d)none of these

46. The complex numbers z1,z2,z3 satisfying z1z3z2z3=1i32 are the vertices of a triangle which is

 a)of area zero
 b)right- angled isosceles
 c)equilateral
 d)obtuse angled isosceles

47. Let z1 and z2be nth roots of unity which subtend a right angle at the origin. Then n must be the form

 a)4k + 1
 b)4k + 2
 c)4k + 3
 d)4k

48. If z1, z2, z3 are complex numbers such that | z 1 | = | z 2 | = | z 3 | = | 1 z 1 + 1 z 2 + 1 z 3 | = 1 , then |z1+z2+z3| is

 a)1
 b)<1
 c)>3
 d)3

49. For positive integers n1 and n2 the value of the expression (1+i)n1+(1+i3)n1+(1+i5)n2+(1+i7)n2 is a real number if and only if

 a)n1=n2+1
 b)n1=n21
 c)n1=n2
 d)n1>0, n2>0

50. 4 + 5(12+i32)334+3(12+i32)365=

 a)1- i3
 b)-1 +i3
 c)i3
 d)i3