1. cos−1 (xy + 1−x21−y2) is equal to
2. It x > 1 then 2 tan−1 x cannot be equal to
3. If x ∈(12), then sin−1(2x1−x2) is equal to
4. If minimum value of (sin−1x)2+ (cos−1x)2 is π2k , then value of k is
5. tan−1(1+x2-x) is equal to
6. cos−135 - cos−1 513 is equal to
7. tan−1 23 + tan−1 34 is equal to
8. For 0 ≤cos−1 x ≤ π and - π2 ≤sin−1 x ≤π2, the value of cos (sin−1 x + 2 cos−1 x) at x = 15
9. If tan−1 2, tan−1 3 are two angles of a triangle, then the third angle is
10. If sin−1 x + sin−1 y + sin−1 z = 3π/2, the value of x100+y100+z100-9x101+y101+z101 is
11. Two angles of a triangle are cot−1 2 and cot−1 3. Then the third angle is
12. If x + 1/x = 2, the principle value of sin−1 x is
13. If sin−1 (1 - x) - 2 sin−1 x = π/2, then x equals
14. The value of tan−1 1 + tan−1 2 +tan−1 3 is
15. If π≤ x ≤2π, then cos−1 (cos x) is equal to
16. If A = tan−1(x32k−x) and B = tan−1(2x−kk3), then the value of A - B is
17. The value of sin (cot−1 x) is
18. The principal value of sin-1( sin2π3) is
19. If xy + yz + zx = 1, then tan−1 x + tan−1 y + tan−1 z is equal to
20. cos−112 + 2 sin−1 12 is equal to
21. A solution of the equation tan−1(1+x)+tan−1(1−x)=π2 is
22. Domain of sin−1(x)is
23. If tan−1(x+1)+tan−1(x−1)=tan−1(831) then x is
24. The principal value of sin−1(−32) is
25. If x = sin−1K y = cos−1K;−1≤K≤1 then the correct relationship is
26. Considering only the principal values of tan (cos−1x) = sin (cot−112) then x equals
27. cot−1ab+1a−b+cot−1bc+1b−c+cot−1ca+1c−a is equal
28. If A =tan−1x then the value of sin 2A is
29. sin(sin−112+cos−112) is
30. tan (π4+12cot−1x)+tan(π4−12cot−1x) where (x≠0) is
31. If cos−1x−sin−1x=0 then x is equal to
32. If tan−12,tan−13 are two angles of a triangle, then the third angle is
33. The principal value of sin−1[cos(sin−132)] is
34. tan−1tan(3π4) is equals to
35. The principal value of sin−1(sin2π3) is
36. cos−1(cos(7π6)) is equals to
37. sin [12cot−1(−34)] is equal to
38. If we consider only the principal value of the inverse trigometric functions then the value of tan (cos−1152−sin−1417) is
39. The value of tan[cos−1(45)+tan−1(23)] is
40. cos−1(12)+2sin−1(12) is equal to