Question Bank No: 1

1cos1 (xy + 1x21y2) is equal to

 a)cos1 x - cos1 y
 b)cos1 y - cos1 x
 c)cos1 x + cos1 y
 d)None of these

2. It x > 1 then 2 tan1 x cannot be equal to

 a)cos1(1x21+x2)
 b)π - sin1(2x1+x2)
 c)π+tan1(2x1x2)
 d)πcos1(1x21+x2)

3. If x (12), then sin1(2x1x2) is equal to

 a)2 sin1 x
 b)2 cos1 x
 c)π - 2 sin1 x
 d)None of these

4. If minimum value of (sin1x)2+ (cos1x)2 is π2k , then value of k is

 a)4
 b)6
 c)8
 d)None of these

5tan1(1+x2-x) is equal to

 a)π4+12tan1x2
 b)π412tan1x2
 c)π212tan1x2
 d)None of these

6cos135 - cos1 513 is equal to

 a)cos1 (6365)
 b)-cos1 (6365)
 c)πcos1 (6365)
 d)None of these

7tan1 23 + tan1 34 is equal to

 a)tan1 176
 b)tan1 617
 c)π - tan1 176
 d)None of these

8. For 0 cos1 x π and - π2 sin1 x π2, the value of cos (sin1 x + 2 cos1 x) at x = 15

 a)265
 b)65
 c)265
 d)65

9. If tan1 2, tan1 3 are two angles of a triangle, then the third angle is

 a)300
 b)450
 c)600
 d)750

10. If sin1 x + sin1 y + sin1 z = 3π/2, the value of x100+y100+z100-9x101+y101+z101 is

 a)0
 b)1
 c)2
 d)3

11. Two angles of a triangle are cot1 2 and cot1 3. Then the third angle is

 a)π/4
 b)3 π/4
 c)π/6
 d)π/3

12. If x + 1/x = 2, the principle value of sin1 x is

 a)π/4
 b)ππ/2
 c)π
 d)3π/2

13. If sin1 (1 - x) - 2 sin1 x = π/2, then x equals

 a)0, -1/2
 b)0, 12
 c)0
 d)None of these

14. The value of tan1 1 + tan1 2 +tan1 3 is

 a)0
 b)1
 c)π
 d)-π

15. If π x 2π, then cos1 (cos x) is equal to

 a)x
 b) -x
 c)2π + x
 d)2π - x

16. If A = tan1(x32kx) and B = tan1(2xkk3), then the value of A - B is

 a)00
 b)450
 c)600
 d)300

17. The value of sin (cot1 x) is

 a)11+x2
 b)11+x2
 c)x1+x2
 d)x1+x2

18. The principal value of sin-1( sin2π3) is

 a)2π/3
 b)- 2π/3
 c)π/3
 d)4π/3

19. If xy + yz + zx = 1, then tan1 x + tan1 y + tan1 z is equal to

 a)π
 b)π/2
 c)1
 d)None of these

20cos112 + 2 sin1 12 is equal to

 a)π/4
 b)π/6
 c)π/3
 d)2π/3

21. A solution of the equation tan1(1+x)+tan1(1x)=π2 is

 a)x=1
 b)x= -1
 c)x=0
 d)x=π

22. Domain of sin1(x)is

 a)(-π,π)
 b)[1,1]
 c)(0,2π)
 d)(-,)

23. If tan1(x+1)+tan1(x1)=tan1(831) then x is

 a)1
 b)12
 c)-12
 d)14

24. The principal value of sin1(32) is

 a)2π3
 b)π3
 c)4π3
 d)5π3

25. If x = sin1K y = cos1K;1K1 then the correct relationship is

 a)x+y=2
 b)x-y=2
 c)x+y=π2
 d)x-y=π2

26. Considering only the principal values of tan (cos1x) = sin (cot112) then x equals

 a)15
 b)25
 c)35
 d)53

27cot1ab+1ab+cot1bc+1bc+cot1ca+1ca is equal

 a)0
 b)1
 c)π4
 d)none of these

28. If A =tan1x then the value of sin 2A is

 a)2x1x2
 b)x1x2
 c)2x1+x2
 d)none of these

29sin(sin112+cos112) is

 a)0
 b)1
 c)12
 d)12

30. tan (π4+12cot1x)+tan(π412cot1x) where (x0) is

 a)x
 b)2x
 c)2x
 d)none of these

31. If cos1xsin1x=0 then x is equal to

 a)±12
 b)1
 c)2
 d)12

32. If tan12,tan13 are two angles of a triangle, then the third angle is

 a)π4
 b)3π4
 c)π2
 d)none of these

33. The principal value of sin1[cos(sin132)] is

 a)π6
 b)π3
 c)π3
 d)none of these

34tan1tan(3π4) is equals to

 a)π4
 b)π4
 c)3π4
 d)none of these

35. The principal value of sin1(sin2π3) is

 a)2π3
 b)2π3
 c)4π3
 d)π3

36cos1(cos(7π6)) is equals to

 a)7π6
 b)5π6
 c)π3
 d)π6

37. sin [12cot1(34)] is equal to

 a)15
 b)25
 c)25
 d)15

38. If we consider only the principal value of the inverse trigometric functions then the value of tan (cos1152sin1417) is

 a)293
 b)293
 c)329
 d)329

39. The value of tan[cos1(45)+tan1(23)] is

 a)617
 b)176
 c)167
 d)None of these

40cos1(12)+2sin1(12) is equal to

 a)π4
 b)π6
 c)π3
 d)2π3