Question Bank No: 1

1. Which of the following is equal to f02η(sinx)dx

 a)20π f (sinx)dx
 b)fππ(sinx)dx
 c)20π f (sinx)dx
 d)None of the above

20π/4tan4 x dx is

 a)π/4+1
 b)π/4- 1/3
 c)π/4- 2/3
 d)1/3-π/4

30π dx/9 cos2 x + 4 sin2x is

 a)π/3
 b)π/36
 c)π/16
 d)None.

4π/4π cos4 x cos2 x dx =

 a)2π
 b)π/4
 c)π/8
 d)None.

5π/4π/4 sin3 x cos2 x dx =

 a)2
 b)2 2
 c)1/2 2
 d)0

60π sin5 x dx

 a)8/15
 b)1516
 c)8π/15
 d)0

70πcos7 x dx =

 a)32/35
 b)16/35
 c)16π/35
 d)0

80π/2 logsinxlogsinx+logcosxdx =

 a)0
 b)π/2
 c)π/4
 d)π

901 x(1x)n dx =

 a)1/(n-1) (n-2)
 b)1/n+1+1/n+2
 c)1/(n+1) (n+2)
 d)(n+1) (n+2)

100π/2 a2 cos2 x + b2 sin2 x dx =

 a)a2 + b2
 b)(a2 + b2)π
 c)(a2 + b2)π/4
 d)abπ

1104 xx+4xdx=

 a)4
 b)2
 c)1
 d)3

12. If 1n = 0π/2 Sinn x dx then 1n1n2 =

 a)1/n
 b)n/n-2
 c)n/n-1
 d)n-1/n

130π xf (sin x) dx and 0π f (sin x) dx are in the ratio

 a)π:3
 b)π:2
 c)2:π
 d)π:1

14 e3x cos 2x dx=

 a)e3x/13 (3 cos 2x + 2 sin 2x) + c
 b)e3x/13 (3 cos 2x - 2 sin 2x) + c
 c)e3x 13 (3 cos 2 x + 2 sin 2 x + c)
 d)e3x (3 cos 2x - 2 sin 2x) + c

15. If a is such that 0a x dx a + 4, then

 a)0 a 4
 b)-2 a 0
 c)a -2 or a 4
 d)-2 a 4

16. The value of the integral sin1 x dx is

 a)x sin1 x
 b)x sin1 x - (1x)2
 c)x sin1 x + (1x)2
 d)None of these

17. Area bounded by the curve y = 2x - x2 and the line y = - x is given by

 a)22- 1
 b)(2 2+ 1)/7
 c)2
 d)22

18. Let A1 be the area of the parabola y2 = 4ax lying between vertex and latus rectum and A2 be the area between latus rectum and double ordinate x = 2a. Then A1/A2

 a)22- 1
 b)(2 2+ 1)/7
 c)(2 2- 1)/7
 d)2

19. solution of sin x cos y dy + cos x sin y dx is

 a)Cos x + y = k
 b)Sin x + y = k
 c)sin x sin y = k
 d)sin x - sin y = k

20. Solution of xy2 dy/dx = x3+ y3is

 a)x3= c ey3/x3
 b)x3 y3= log x+c
 c)xy = c
 d)x/y = c

21. Solution of sec2x tan y dx + sec2 y tan x dy = 0

 a)tan x tan y = k
 b)tan x + sec x = tan y + sec y + k
 c)tan x sec y + sec y tan x + k
 d)tan x + sec x = tan y - sec y +k

22. If f (x) = {x29x32x+kotherwise} if x 3, is continuous at x = 3 then k =

 a)3
 b)0
 c)-6
 d)16

23ddx xx is equal to

 a)log x
 b)log ex
 c)xx log x
 d)xx log ex

24. If the displacement s of a particle at time t is given by s2 = at2 + 2bt + c, then acceleration varies as

 a)1/s2
 b)1/s
 c)1/s3
 d)s3

25. If PQ and PR are the two sides of a triangle, then the angle between them which gives maximum area of the triangle is

 a)π
 b)π/3
 c)π/4
 d)π/2

26. The function y = a(1-cos x ) is maximum when s is eaual to

 a)π
 b)π/2
 c)-π/2
 d)π/6

27 sinxsin(xa) dx is equal to

 a)x cos a + sin a log sin(x-a) + C
 b)(x-a)cos x + log sin(x-a) + C
 c)Sin (x-a) + sin x +C
 d)Cos (x-a) + cos x + C

28 13x dx is

 a)13xlog13 + C
 b)13x+1 + C
 c)14 x + C
 d)14x+1 + C

290π/2 sin 2x log tan x dx is equal to

 a)π
 b)π/2
 c)1
 d)None of these

300π/2 x sin x dx is equal to

 a)π/4
 b)π/2
 c)π
 d)1

31limx0 1cosmx1cosnx =

 a)m/n
 b)m2/n2
 c)0
 d)n2/m2

32. Which of the following is not true ?

 a)A polynomial function is always continuous
 b)A continuous function is always differentiable
 c)a differentiable function is always continuous
 d)ex is continuous for all x

33limx0 axbxex1 is equal to

 a)log a/b
 b)log b/a
 c)log ab
 d)log a+b

34. The derivative of x6 + 6x with respect to x ix

 a)12 x
 b)x+4
 c)6x5 + 6x log 6
 d)6x5 + x 6x1

35. If x = a cos4 θ, y = a sin4 θ,thendydx at θ = 3π4 is

 a)a2
 b)1
 c)-1
 d)-a2

36. If sin y + excosy = e, then dydx at (1,π) is,

 a)sin Y
 b)- x cos y
 c)e
 d)None

37. If x = sin1 (3t4t3) and y = cos1 [1t21+t2] then dydx is equal to

 a)1/2
 b)2/5
 c)3/2
 d)2/3

38. The second derivative of a sin3 t with respect to a cos3 t at t = π4 is

 a)423a
 b)2
 c)112a
 d)0

39. The equation of the tangent to the curve (1 + x2) y = 2-x where it crosses the x - axis is

 a)x + 5y = 2
 b)x-5y = 2
 c)5x - y = 2
 d)5x +y-2 = 0

40. The side of an equilateral triangle are increasing at the rate of 2 cms/sec. The rate at which the area increases, when the side is 10 cms is

 a)3 sq.units/sec
 b)10 sq.units/sec
 c)10 3sq units sec.
 d)103 sq.units.sec

4122 |1x2| dx is equal to

 a)4
 b)2
 c)-2
 d)0

42 tanxsinxcosx dx is equal to

 a)2 tan x
 b)cotx
 c)2 tanx
 d)tan2 x

43 tanx dx =

 a)sec2 x
 b)cotx
 c)2tanx
 d)log sec x

44 dxx2+4x+13 is equal to

 a)log(x2 + 4x+13) + C
 b)1/3 tan1[x+23] + C
 c)log (2x+4) + C
 d)1(x2+4x+13)+ C

4502 ddx [sin - 1[2x1+x2] ] dx ix equal to

 a)0
 b)π
 c)π/2
 d)π/4

460π/2 sinxsinx+cosx dx evaluates to

 a)π
 b)π/2
 c)π/3
 d)π/4

47. The area bounded by the parabolas y2 = 4 ax and x2 = 4ay is

 a)8a23
 b)16a23
 c)32a23
 d)64a23

48. The area bounded by the curve y = sin x between the ordinates x = 0, x = π and then the x - axis is

 a)2.sq.units
 b)4.sq.units
 c)1.sq.units
 d)3.sq.units

49. The degree of the differential equation d2ydx2 +[ dxdy]3 + 6y = 0 is

 a)1
 b)3
 c)2
 d)5

50. The solution of the equation (2y - 1) dx - (2x + 3) dy = 0 is

 a)2x12y+2 = C
 b)2x+32y1 = C
 c)2x12y1 = C
 d)2y+12x3 = C