Question Bank No: 2

1x>1lim x22x+1|x21| =

 a)0
 b)1
 c)-1
 d)2

2x>lim 0(axbx)/x=

 a)0
 b)1
 c)log a - log b
 d)log a/ log b

3x>lim 0(2+x)sin(2+x)2sin2x=

 a)sin 2
 b)cos 2
 c)1
 d)2 cos 2 + sin 2

4. If f(x) = 3x+tan2+xx is continuous at x = 0, then f (0) =

 a)1
 b)2
 c)4
 d)3

5. If |f(x)| is continuous at x = a, then f(x)

 a)is continuous at x = a
 b)is continuous at x = - a
 c)is continuous at x = a
 d)is not continuous at x = a

6. If x is measured in degree, then (d/dx) (cos x) =

 a)- Sin x
 b)- [180π ] sin x
 c)(π/180) sin x
 d)-(π/180) sin x

7. (d/dx) [ log (sec x - tan x ] =

 a) - sec x
 b)sec x + tan x
 c)sec x
 d)sec x - tan x

8. If x = a cos3 θ and y = a sin3 θ, then 1+ (dy/dx)2 =

 a)tan2 θ
 b)cot2θ
 c)sec2θ
 d)cosec2θ

9. If xy = x+y, then (dy/dx) =

 a)xy/(1-x)
 b)(1+y)/(1-x)
 c)y/(1-xy)
 d)-1/(x1)2

10. If x = at2 , y = 2 at, then d2y/dx2 =

 a)-1/(t2)
 b)-1(2at3 )
 c)1/(t2 )
 d)Zero

11. The value of x1 for which |x| is continuous but not differentiables, is

 a)-1
 b)1
 c)0
 d)10

12. (d20/dx20 ) ( 2 cos x.cos 3x) =

 a)220 (cos 2x + 220 cos 4x)
 b)220 (cos 2x + 220 sin 2x)
 c)-6 sin x sin 3 x
 d) 6 sin x sin 3x

13. If the rate of change in the circumference of a circle is 0.3/sec, then the rate of change in the area of the circle when the radius is 5 cm, is

 a)1.5 sq.cm/sec
 b)0. 5 sq.cm/sec
 c)5 sq.cm/sec
 d)3 sq.cm/sec

14. A particle moves along a straight line according to the law s = et ( Sin t - cos t) The acceleration at any time is

 a)et (cos t+ Sin t)
 b)et (cos t -Sin t)
 c)2et (cos t- Sin t)
 d)2et (cos t+ Sin t)

15. If y = x3 - ax2 + 48 x + 7 is an increasing function for all real values of x, then a lies in

 a)(-14,14)
 b)(-12,12)
 c)( -16,16)
 d)(-21,21)

16. The value of 'a' for which the function f(x) = a sin x + (1/3) has an extremum ar x = π/3 is

 a)1
 b)-1
 c)2
 d)0

17. Rolle's theorem is not applicable for the function f(x) = |x| in the interval [-1,1] because

 a) f(1) does not exist
 b)f(-1) does not exist
 c)f(x) is discountinuous at x = 0
 d)f(0) does not exist

18 2dx(ex+ex)2 dx =

 a)ex(ex+ex)
 b)1ex+ex
 c)1(ex+1)2
 d)1(exex)

19x3x+1 dx =

 a)x33 - x22 + c
 b)x33 - x22 + x-log (x+1)+ C
 c)x33 + x22 + +x + log (x+1) + C
 d)x42(x+1)2 + C

20ex(1+x)Cos2(xex) dx =

 a)2 log cos (x ex) + C
 b)sec (x xx)
+ C
 c)tan (x ex)
+ C
 d)tan ( x+ ex) + C

21axex dx =

 a)axex + C
 b)[axex/loga] + C
 c)[ae)x/(x+1)] + C
 d)[axex/(1+loga)] + C

224x(x2+1)(x2+3) dx

 a)log[(x2+1)/(x2+3) ] + C
 b)log[(x2+3)/(x2+1) ] + C
 c)tan -1 x + (1/3)+ C
 d)2log[(x2+1)/(x2+3) ] + C

23Sin2xCos4x dx =

 a)(1/3) tan2 x + C
 b)(1/2) tan2 x + C
 c)(1/3) tan3 x + C
 d)3 sin 2x - 4 cos 4x + C

241/21/2 dx(1x2)1/2 =

 a)π/6
 b)π/4
 c)π/2
 d)2 π/3

250π/2 Sinnθsinnθ+cosnθdθ

 a)1
 b)0
 c)π/2
 d)π/4

26. The area ( in square units) enclosed by the curve x2 y = 36, the x - axis and the lines
x = 6 and x = 9 is

 a)2
 b)1
 c)4
 d)None

27. The degree of the differential equation [ 5 + (dy/dx2]5/3 = x5(d2y/dx2] is

 a)4
 b)2
 c)5
 d)3

28. The general solution of x ( 1+ y2)1/2 dx + y ( 1+ y2)1/2 dy = 0 is

 a)sin1 x + sin1 y = C
 b)x2 + y2 = (1+x2)1/2 + (1+y2)1/2 + C
 c)(1+x2)1/2 + (1+y2)1/2 + C
 d)tan1 x - tan1 y = C

29. The general solution of (x+1) dy/dx + 1 = 2ey is

 a)ey = 2x + C
 b)ey = 2x + C
 c)ey(x+1) = 2x + C
 d)ey (x+1) =C

30. The general solution of dy/dx+ y cot x = cosec x is

 a)x+y sin x = C
 b)x+ y cos x = C
 c)y = x (sinx + cos x) + C
 d)y sin x = x + C

31LtX3 x29|x3| =

 a)0
 b)3
 c)
 d)does not exist

32. If f (x) = log(1+ax)log(1bx)x for x 0 and f (0) = k and f (x) is continuous at x = 0, then k =

 a)a+b
 b)a-b
 c)a
 d)b

33. Lt 2 (1Cosx)x2 is

 a)1
 b)1/2
 c)1/4
 d)0

34Ltx>0X>0 logCosxx2 equals

 a)0
 b)1
 c)2
 d)3

35Ltn>X>0 11n2 + 21n2 + ..........n1n2 equals

 a)0
 b)-1/2
 c)1/2
 d)None

36. If f (x) 1CosKx;xsinx ; x 0 and f(0) = 1/2 and if f(x) is continuous at x = 0 then K equals

 a)0
 b)± 1
 c)2
 d)3

37. The function f(x) = 3x-5 for x <3 = x+1 for x>3
= k for x = 3 is continuous at x = 3 if k equals

 a)1
 b)2
 c)3
 d)4

38. d/dx (sin1 x + Cos1 x) =

 a)1
 b)π/2
 c)0
 d)2

39. If y = Xxx......infinity thendy/dx =

 a)y21ylogx
 b)y2x(1ylogx)
 c)y2logxy
 d)0

40. If f(x) = log (x + x2+1) then f1 (x) equals

 a)x2+1
 b)xx2+1
 c)1x2+1
 d)0

41. If y = tan1 [1+x21x] then y1 (0) =

 a)1
 b)1/2
 c)0
 d)2

42. If xy = exy then dy/dx =

 a)y(1+logx)2
 b)x(1+logx)2
 c)xy(1+logx)2
 d)None

43. If y = tan1 [sinx+CosxCosxSinx] then dy/dx =

 a)1
 b)1/2
 c)0
 d)2

44. If x2 + y2 + 2 gx + 2 fy + c = 0 then dy/dx =

 a)g+xf+y
 b)x+Cyf
 c)xyfg
 d)None

45. If y = a sin mx + b cos mx then d2y/dx2 =

 a)m2y
 b)m2y
 c)my
 d)-my

46. If y = log10x then dy/dx =

 a)1x
 b)0
 c)log10x
 d)1xlog10

47. The point on the curvey y = 12x- x3, then tangent at which are parallel to x axis are

 a)( 2,16) and (-2,-16)
 b)(2,16) and ( -2,16)
 c)( 1,4) and ( -1,-4)
 d)None

48. f(x) = x3 - 6x2+ 9x + 8 then f(x) is decreasing in

 a)(1,3)
 b)(2,3)
 c)(0,1)
 d)R

49. The function of f(x) = 2x3 - 3x2 - 12x + 4 has a

 a)minima 1
 b)maxima 1
 c)maxima 11
 d)minima 2

50. If x is in degree measure then d/dx (sin x)

 a)Cos x
 b)180/π Cox x
 c)π/180 Cos x
 d)cos x