1. (300)(3010)−(301)(3011)+(302)(3012)−........+(3020)(3030)=
2. If (n−1r)=(k2−3)(nr+1), then k∈
3. 2k(n0)(nk)−2k−1(n1)(n−1k−1)+2k−2(n2)(n−2k−2)−.....+(−1)k(nk)(n−k0)=
4. The coefficeint of x24in(1+x2)12(1+x12)(1+x24)is
5. The sum ∑im(10i) (20m−i), where (pq)=0ifp<q,is maximum for m=
6. Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If Tn+1−Tn=21,thenn=
7. In the binomial expansion of (a−b)n,n≥5, the sum of the 5th and 6th terms is zero, then ab=
8. For any positive integers n≥m, ( n m ) + 2 ( n − 1 m ) +3(n−2m) +.......+(n-m+1)(mm)=
9. For any positive integers with n≥m, ( n m ) +(n−1m)+(n−2m)+.....+(mm)=
10. For 2≤r≤n,(nr)+2(nr−1)+(nr−2)=
11. If in the expansion of (1+x)m(1−x)n,the coefficient of x and x2 are 3 and -6 respectively, then m=
12. ∑r=0n (−1)r(nr)(r+3r)=
13. The sum of the rational terms in the expansion of (2+315)10 is
14. Let n∈N and (1+x+x2)n=∑r=02narxr. Then a 0 2 − a 1 2 + a22−........+a2n2=
15. Let n∈N. If the coefficient of 2nd, 3rd, 4th terms in the expansion of (1+x)nareinA.P., then x=
16. If n is an even integer and N=3n2, then ∑r=1N(−3)r−1(3n2r−1)=
17. If∑r=02nCr(x−2)r=∑r=02nbr(x−3)r and ar=1forallr≥n,thenbn=
18. (x+x3−1)5+(x−x3−1)5 is a polynomial of degree
19. If n∈N,thenn77+n55+2n33−n105 is
20. If n>2 and Cr=(nr), then 1 2 · C 0 − 2 2 · C 1 + 3 2 · C 2 − .......... =
21. Let R=(55+11)2n+1andf=R−[R], the fractional part. Then Rf=
22. If n is an even integer and Cr=(nr), then 2 ( n 2 ) ! ( n 2 ) ! n ! [C02−2·C12+3·C22−.....+(n+1)Cn2]
23. ∑r=0n (−1)r(nr)[12r+3r22r+7r23r+.....tomterms]=
24. If Sn=1+q+q2+....+qn,q≠1 and Sn=1+q+12+(q+12)2+....+(q+12)n,then, ( n + 1 1 ) + ( n + 1 2 ) S1+(n+13)S2+.....+(n+1n+1)Sn=
25. If (1+x)n=∑r=0nCrxr, then the sum of the products of the Cr taken two at a time represented by ∑0≤i≤j≤n CiCi is
26. The coefficient of x4in(x2−3x2)10 is
27. If (1+ax)n=1+8x+24x2+..., then a+n=
28. The sum of all the coefficients of the polynomial (1+x−3x2)2 is
29. If a=9950+10050 and b=10150, then
30. The greatest integer m such that 5m divides 72n+23n−3·3n−1 for n∈N,is
31. (474)+∑i=15(52−i3) =
32. Given the positive integers r>1,n>2 and the coefficients of 3rth and r+2th terms in the expansion of (1+x)2n are equal, then n=
33. IfCr=(2nr),then 1·C12−2·C22+3·C32−..........−2n·C2n2=
34. IfCr=(nr),then ∑r=1nr2·Cr=
35. If (nr−1)=36,(nr)=84,(nr+1)=126 then r=
36. (2n0)2−(2n1)2+(2n2)2−......+(2n2n)2=
37. IfCr=(nr),then ∑r=0nCrr+1=
38. Cr=(nr),then ∑r=0nCr·2r+2(r+1)(r+2)=
39. If n∈N, then the highest integer m such that 2m divides 32n+2−8n−9is
40. The least positive integer n such that (n−13)+(n−14)>(n3) is
41. IfA1,A2,A3,A4 are any four consecutive binomial coefficients in the expansion of (1+x)n,then A 1 A 1 + A 2 + A 3 A 3 + A 4 + 2 A 2 A 2 + A 3 =
42. If a is a constant and n>1, an integer, then ∑n=0n(−1)r(a−r)(nr)=
43. IfCr=(nr), then ∑r=0n(r+1)Cr=
44. If Cr=(10r), then ∑r=010Cr·2r+1r+1=
45. If x=(2+1)6, then the integer part [x] is
46. Let 2n∈N. If the coefficients of 2nd,3rd,4th terms in the expression of (1+x)2n are equal, then n=
47. If ∑r=0nCrxr=(1+x)n,then ∑r=1nr·Cr=
48. If (153r)=(15r+3), then r=
49. If the coefficients of x7in (ax2+1bx)11andx−7in (ax−1bx2)11 are equal, then
50. If (1+x)15=∑r=015Crxr,then∑r=215(r−1)Cr=