Question Bank No: 2

1(300)(3010)(301)(3011)+(302)(3012)........+(3020)(3030)=

 a)(3011)
 b)(6010)
 c)(3010)
 d)(6555)

2. If (n1r)=(k23)(nr+1), then k

 a)(,2]
 b)[2,)
 c)[3,2]
 d)[2,3) (3,2]

32k(n0)(nk)2k1(n1)(n1k1)+2k2(n2)(n2k2).....+(1)k(nk)(nk0)=

 a)(nk1)
 b)(n+1k)
 c)(nk)
 d)(n+1k+1)

4. The coefficeint of x24in(1+x2)12(1+x12)(1+x24)is

 a)(126)
 b)(126)+1
 c)(126)+2
 d)(126)+3

5. The sum im(10i) (20mi), where (pq)=0ifp<q,is maximum for m=

 a)5
 b)10
 c)15
 d)20

6. Let Tn denote the number of triangles which can be formed using the vertices of a regular polygon of n sides. If Tn+1Tn=21,thenn=

 a)5
 b)7
 c)6
 d)4

7. In the binomial expansion of (ab)n,n5, the sum of the 5th and 6th terms is zero, then ab=

 a)n56
 b)n45
 c)5n4
 d)6n5

8. For any positive integers nm, ( n m ) + 2 ( n 1 m ) +3(n2m) +.......+(n-m+1)(mm)=

 a)(n+2m)
 b)(n+1m)
 c)(n+2m+1)
 d)(n+2m+2)

9. For any positive integers with nm, ( n m ) +(n1m)+(n2m)+.....+(mm)=

 a)(n+1m)
 b)(n+1m+1)
 c)(nm+1)
 d)(n+mm)

10. For 2rn,(nr)+2(nr1)+(nr2)=

 a)(n+1r1)
 b)2(n+1r+1)
 c)2(n+2r)
 d)(n+2r)

11. If in the expansion of (1+x)m(1x)n,the coefficient of x and x2 are 3 and -6 respectively, then m=

 a)6
 b)9
 c)12
 d)24

12r=0n (1)r(nr)(r+3r)=

 a)2n+3
 b)6n+2
 c)3n+2
 d)3n+3

13. The sum of the rational terms in the expansion of (2+315)10 is

 a)28
 b)36
 c)41
 d)54

14. Let nN and (1+x+x2)n=r=02narxr. Then a 0 2 a 1 2 + a22........+a2n2=

 a)an2
 b)0
 c)an
 d)2an

15. Let nN. If the coefficient of 2nd, 3rd, 4th terms in the expansion of (1+x)nareinA.P., then x=

 a)4
 b)5
 c)6
 d)7

16. If n is an even integer and N=3n2, then r=1N(3)r1(3n2r1)=

 a)N
 b)-2N
 c)1
 d)0

17. Ifr=02nCr(x2)r=r=02nbr(x3)r and ar=1forallrn,thenbn=

 a)(2nn1)
 b)(2nn)
 c)(2n+1n)
 d)(2n1n)

18(x+x31)5+(xx31)5 is a polynomial of degree

 a)5
 b)6
 c)7
 d)8

19. If nN,thenn77+n55+2n33n105 is

 a)a negative natural number
 b)a positive natural number
 c)a positive rational number
 d)a negative rational number

20. If n>2 and Cr=(nr), then 1 2 · C 0 2 2 · C 1 + 3 2 · C 2 .......... =

 a)0
 b)(1)n
 c)n
 d)n

21. Let R=(55+11)2n+1andf=R[R], the fractional part. Then Rf=

 a)42n
 b)42n1
 c)42n+1
 d)22n+1

22. If n is an even integer and Cr=(nr), then 2 ( n 2 ) ! ( n 2 ) ! n ! [C022·C12+3·C22.....+(n+1)Cn2]

 a)(1)n2(n+2)
 b)(1)n2(n+1)
 c)(1)n2·n
 d)none of these

23r=0n (1)r(nr)[12r+3r22r+7r23r+.....tomterms]=

 a)122mn12n
 b)1+2mn12n
 c)12mn2n1
 d)12mn1+2n

24. If Sn=1+q+q2+....+qn,q1 and Sn=1+q+12+(q+12)2+....+(q+12)n,then, ( n + 1 1 ) + ( n + 1 2 ) S1+(n+13)S2+.....+(n+1n+1)Sn=

 a)2n·Sn
 b)2n1·Sn
 c)2n·Sn+1
 d)2n·Sn1

25. If (1+x)n=r=0nCrxr, then the sum of the products of the Cr taken two at a time represented by 0ijn CiCi is

 a)22n1(2n1n)
 b)22n1(2nn)
 c)22n(2nn)
 d)22n(2nn1)

26. The coefficient of x4in(x23x2)10 is

 a)405256
 b)504259
 c)405263
 d)none of these

27. If (1+ax)n=1+8x+24x2+..., then a+n=

 a)4
 b)5
 c)6
 d)7

28. The sum of all the coefficients of the polynomial (1+x3x2)2 is

 a)0
 b)1
 c)-1
 d)3

29. If a=9950+10050 and b=10150, then

 a)a=b
 b)a >b
 c)a <b
 d)none of these

30. The greatest integer m such that 5m divides 72n+23n3·3n1 for nN,is

 a)0
 b)1
 c)2
 d)3

31(474)+i=15(52i3) =

 a)(504)
 b)(513)
 c)(523)
 d)(524)

32. Given the positive integers r>1,n>2 and the coefficients of 3rth and r+2th terms in the expansion of (1+x)2n are equal, then n=

 a)2r
 b)2r-1
 c)2r+1
 d)3r

33. IfCr=(2nr),then 1·C122·C22+3·C32..........2n·C2n2=

 a)(1)n(2nn)
 b)(1)n1(2n1n)
 c)(1)n(2nn1)
 d)(1)n1(2n)!n!(n1)!

34. IfCr=(nr),then r=1nr2·Cr=

 a)n(n1)2n1
 b)n(n+1)2n1
 c)n(n+1)2n2
 d)n(n1)2n

35. If (nr1)=36,(nr)=84,(nr+1)=126 then r=

 a)2
 b)3
 c)4
 d)5

36(2n0)2(2n1)2+(2n2)2......+(2n2n)2=

 a)(2nn)
 b)(2nn1)
 c)(1)n1 (2nn1)
 d)(1)n(2nn)

37. IfCr=(nr),then r=0nCrr+1=

 a)2n+1n
 b)2n+1+1n+1
 c)2n+11n
 d)2n+11n+1

38Cr=(nr),then r=0nCr·2r+2(r+1)(r+2)=

 a)3n+22n1n(n+1)
 b)3n+22n3(n+1)(n+2)
 c)3n+22n5(n+1)(n+2)
 d)none of these

39. If nN, then the highest integer m such that 2m divides 32n+28n9is

 a)3
 b)4
 c)6
 d)8

40. The least positive integer n such that (n13)+(n14)>(n3) is

 a)6
 b)7
 c)8
 d)9

41. IfA1,A2,A3,A4 are any four consecutive binomial coefficients in the expansion of (1+x)n,then A 1 A 1 + A 2 + A 3 A 3 + A 4 + 2 A 2 A 2 + A 3 =

 a)n-2
 b)1
 c)-1
 d)0

42. If a is a constant and n>1, an integer, then n=0n(1)r(ar)(nr)=

 a)0
 b)n
 c)-a
 d)n-a

43IfCr=(nr), then r=0n(r+1)Cr=

 a)(n+1)2n
 b)(n+1)2n1
 c)(n+2)2n1
 d)(n+2)·2n

44. If Cr=(10r), then r=010Cr·2r+1r+1=

 a)31111
 b)21111
 c)311111
 d)211111

45. If x=(2+1)6, then the integer part [x] is

 a)98
 b)197
 c)196
 d)198

46. Let 2nN. If the coefficients of 2nd,3rd,4th terms in the expression of (1+x)2n are equal, then n=

 a)14
 b)7
 c)72
 d)none of these

47. If r=0nCrxr=(1+x)n,then r=1nr·Cr=

 a)n·2n
 b)n+1)·2n
 c)n·2n1
 d)(n+1)·2n1

48. If (153r)=(15r+3), then r=

 a)2
 b)3
 c)4
 d)5

49. If the coefficients of x7in (ax2+1bx)11andx7in (ax1bx2)11 are equal, then

 a)a+b=1
 b)a - b=1
 c)ab=-1
 d)ab=1

50. If (1+x)15=r=015Crxr,thenr=215(r1)Cr=

 a)11·2141
 b)13·2141
 c)13·214+1
 d)11·214+1