Question Bank No: 1

1. If tan π9, x and tan 5π18 are in A.P and tanπ9, y and tan 7π18 are also in A.P., then

 a)2x = y
 b)x > y
 c)x = y
 d)None of these

2. If sin θ + cosec θ = 2, then value of sin10 θ + cosec10θis

 a)2
 b)210
 c)25
 d)None of these

3. The value of log tan 10 + tan 20 + ...... + log tan 890 is

 a)0
 b)-1
 c)1
 d)

4. The value of cos π15 cos 2π15 cos3π15 cos4π15 cos5π15 cos6π15 cos7π15is

 a)126
 b)127
 c)128
 d)None of these

5. The value of the expression 3 (sin θ - cos θ)4 + 6(sin θ + cos θ)2+ 4(sin6θ + cos6θ) is

 a)1
 b)-1
 c)13
 d)0

6. The maximum value of 3+sin(π2+θ)+2cos(π2θ) for real θ is

 a)5
 b)7
 c)6
 d)None of these

7. If cos A = 34, then the value of cos A2 cos 5A2 is

 a)332
 b)532
 c)732
 d)716

8cos3θcos3θcosθ sin3θ+sin3θsinθis equal to

 a)1
 b)3
 c)5
 d)0

9. If tan θ = 12 and tan φ=13, then the value of θ + φ is equal to

 a)π6
 b)π
 c)zero
 d)π4

10. If A + B + C = 3π2 then cos 2A + cos 2B + cos 2C is equal to

 a)1 – 4 cos A cos B cos C
 b)4 sin A sin B sin C
 c)1 + 2 cos A cos B cos C
 d)1 – 4 sin A sin B sin C

11. If sec α and cosec α are the roots of x2 – px + q = 0, then

 a)p2 = q (q – 2)
 b)p2= q (q + 2)
 c)p2+ q2= 2q
 d)None of these

12. If tan α equals to the integral solution of the inequality 4x2 - 16x + 15 < 0 and cos βequals to the slope of the bisector of the first quadrant, then sin (α + β) sin (α - β) is equal to

 a)35
 b)-35
 c)25
 d)45

13sin23Asin2A cos23Acos2Ais equal to

 a)cos 2A
 b)8 cos 2A
 c)18cos 2A
 d)None of these

14. If (sec A – tan A) (sec B – tan B) (sec C – tan C) = (sec A + tan A) (sec B + tan B) (sec C + tan C), then each side is equal to

 a)0
 b)1
 c)-1
 d)± 1

15. The vlaue of sin 100 + sin 200 + sin 300 + .... + sin 3600 is

 a)1
 b)0
 c)-1
 d)None of these

163 cosec 200- sec 200 =

 a)2
 b)4
 c)2sin200sin400
 d)4sin200sin400

17. If cos A =34, then 32 sin (A2) sin (5A2) is equal to

 a)7
 b)8
 c)11
 d)None of these

18. The value of cos 10 cos 20 cos 30 ........ cos 1790 is equal to

 a)12
 b)-1
 c)0
 d)2

19. The maximum value of 5 cos θ + 3 cos (θ+π3)+3 is

 a)5
 b)10
 c)11
 d)-11

20. If tan θ = a – 14aa then sec θ - tan θ =

 a)2a
 b)12a, 2a
 c)-2a,12a
 d)12a, 2a

21. If cosec θsinθ=a3and secθcosθ=b3then ab(a2+b2)is

 a)1
 b)-1
 c)2
 d)none of these

22. If x24x+5siny=0,yε(0,2π)then

 a)x=1, y=0
 b)x=1, y=π2
 c)x=2,y=0
 d)x=2,y=π/2

23. If sinand cos are the roots of equation Px2+qx+r=0then

 a)p2+q22pr=0
 b)(pr)2=q2+r2
 c)p2q2+2pr=0
 d)(p+r)2=q2r2

24. If sinθ=2425and θlies in the second quartarnt then secθ+tanθis

 a)-7
 b)6
 c)4
 d)-5

25. If for real value of x, cos θ=x+1xthen

 a)θis an acute angle
 b)θisaright angle
 c)θ is an obtuse angle
 d)No value of θis possible

26. The maximum value of 4sin2x+3cos2x+sinx2+cosx2is

 a)4+2
 b)3+2
 c)9
 d)4

27. If tanθ+sinθ=mand tanθsinθ=n,then m2n2is

 a)4mn
 b)2mn
 c)4mn
 d)2mn

28. If x=psecθand y=qtanθthen

 a)x2y2=p2q2
 b)x2q2y2p2=pq
 c)x2q2y2p2=1p2q2
 d)x2q2y2p2=p2q2

29. If sin θ+cosecθ=2,the value of sin10θ+cosec10θis

 a)2
 b)1
 c)0
 d)4

30. If tan θ=a(0),tan 2θ=b(0)and tanθ+tan2θ=tan3θ then

 a)a=b
 b)ab=1
 c)a+b =0
 d)b=2a

31. If tan θ+secθ=3, 0<θ<π then θ is equal to

 a)5π6
 b)2π3
 c)π6
 d)π3

32. If tanθ =n for some non -square natural number n, then sec 2θis

 a) a rational number
 b)an irrational number
 c)a positive number
 d)none of these

33. If 3 sin θ+5cosθ=5 then the value of 5 sinθ3cosθis equal to

 a)5
 b)3
 c)4
 d)none of these

34. If sinθand cos θ are the roots of the equation ax2bx+c=0 then a,b and c satisfy the relation

 a)a2+b2+2ac=0
 b)a2b2+2ac=0
 c)a2+c2+2ab=0
 d)a2b22ac=0

35. If cosecθcotθ=12 0 < θ<π2 then cos θ is equal to

 a)35
 b)53
 c)53
 d)35

36. If sinθ=2t1+t2 then cos θisequal to

 a)2t1t2
 b)2t1+t2
 c)1t21+t2
 d)1+t21t2

37. If sin A = 12 then A cos3A3cosAis equal to (0o<A<90o)

 a)1
 b)0
 c)32
 d)12

38. If αandβ between 0 and π2 and if cos (α+β)=1213 sin (αβ)=35 then sin 2α is

 a)1615
 b)0
 c)5665
 d)6465

39. If sinθ+cosθ=a then the value of |sinθcosθ| is

 a)2a2
 b)2+a2
 c)a22
 d)None of these

40cos21sin21cos21+sin21 is equal to

 a)tan21o
 b)tan66o
 c)tan24o
 d)tan69o

41. The value of cos1ocos2ocos3o-------------------cos179o is equal to

 a)12
 b)0
 c)1
 d)2

42. If sin x + sin2x = 1, then cos2x+cos4x is equal to

 a)1
 b)-1
 c)0
 d)2

43. In a triangle ABC A = π2 then cos2B+cos2C=

 a)-2
 b)-1
 c)0
 d)1

44. The value of tan 15 + cot 15 is

 a)3
 b)23
 c)4
 d)-4

45. For a cyclic quadrilateral ABCD, cos B+cos D is equal to

 a)1
 b)0
 c)-1
 d)2

46. The value of cot54tan36+tan20cot70 =

 a)3
 b)2
 c)0
 d)1

47. cos 20o cos 40o cos 60ocos 80o is equal to

 a)38
 b)18
 c)116
 d)316

48. sin200o+cos200o is

 a)negative
 b)positive
 c)zero
 d)zero or positive

49. If sin A + cos A = 1, then sin 2A is equal to

 a)1
 b)2
 c)0
 d)12

50. The value of the expression tan1otan2otan3o----------tan88o×tan89o is equal to

 a)0
 b)1
 c)2
 d)