Question Bank No: 3

1. The sides of a triangle are in the ratio 1: 3:2, then the angles are in the ratio.

 a)1: 3 : 5
 b)2 : 3 : 4
 c)3 :2 : 1
 d)1 :2 : 3

2. In ΔABC, the correct relation is

 a)(b - c) sin (BC2) = a cos A2
 b)b -c) cos A2 = a sin (BC2)
 c)(b + c ) sin (B+C2) = a cos A2
 d)(b - c) cos A2 = 2a sin (B+C2)

3. The number of values of x in [0,5π]satisfying the equation 3sin2x7sinx+2 = 0 is

 a)0
 b)5
 c)6
 d)10

4. The solution of sin x+ cos x = 1 is

 a)x =2nπ
 b)x = 2nπ +π2
 c)x = nπ +(1)2(π4)π4
 d)none

5. The smallest positive root of the equation tan x- x = 0 is in

 a)(0,π2)
 b)(π,3π2)
 c)(π2,π)
 d)(3π2,2π)

6. The values of θ in [0,π2] satisfying | 1 + sin 2 θ cos 2 θ 4 sin 4 θ sin 2 θ 1 + cos 2 θ 4 sin 4 θ sin 2 θ cos 2 θ 1 + 4 sin 4 θ | = 0 are

 a)7π24
 b)5π24
 c)14π24
 d)π24

7. The number of solution ofthe equation tanx+secx=2cosx in [0,2π] is

 a)0
 b)1
 c)2
 d)3

8. The number of integral values of k for which the equation 7cosx+5sinx=2k+1 has a solution is

 a)4
 b)8
 c)10
 d)12

9. The number of distinct roots of | sinx cosx cosx cosx sinx cosx cosx cosx sinx | = 0 in [π4,π4] is

 a)0
 b)1
 c)2
 d)3

10. If cos ( x + iy ) = A+iB, then A equals

 a)cos x cosh y
 b)sin x sinh y
 c)– sin x sinh y
 d)cos x sinh y

11. A cow is tied to a post by a rope. If the cow moves along the circular path always keeping the rope tight, and describes 44 metres, when it has traced out 72o at the centre, the length of the rope is

 a)35 metres
 b)22 metres
 c)56 metres
 d)45 metres

12. If sin θ = - 12 and cos θ 3/2, then θ lies in

 a)1st quadrant
 b)IInd quadrant
 c)IIIrd quadrant
 d)IVth quadrant

13. If tan θ =+15 and θ lies in the 1st quadrant, then cos θ is

 a)16
 b)-16
 c)56
 d)- 56

14. The value of cos2 θ + Sec2 θ is always

 a)less than 1
 b)equal to 1
 c)greater than 1, but less than 2
 d)greater than or equal to 2

15. If cos 20o = k and cos x = 2k2- 1, then the possible values of x between 0o and 360o are

 a)140o
 b)40oand 140o
 c)50o and 130o
 d)40o and 320o

16. The minimum value of sin θ cosθ is

 a)1
 b)0
 c)-12
 d)12

17. If 0 < θ < 90o, then secθ is

 a)greater than 1
 b)less than1
 c)equal to 1
 d)none of these

18. sin 50o- sin 70o + sin 10o is equal to

 a)1
 b)0
 c)12
 d)2

19. The value of sin 28o cos 17o + cos 28o sin 17o is

 a)1/2
 b)1
 c)- 1/2
 d)0

20. When x =π2, then tan x is

 a)+
 b)-π2
 c) or -
 d)not defined

21. The value of the expression sin θ + cos θ lies between

 a)-2 and 2 both inclusive
 b)0 and 2 both inclusive
 c)-2 and 2 both inclusive
 d)0 and 2 both inclusive

22. For m n, if tan mθ = tan nθ, then the different values of θ are in

 a)no particular sequence
 b)G.P.
 c)H.P.
 d)A.P.

23. tan 75o - cot 75o is equal to

 a)4
 b)2 + 3
 c)2 - 3
 d)2 3

24. The value of the expression tan 1otan 2o tan 3o tan4o….tan 87o tan 88o tan 89o is equal to

 a)0
 b)1
 c)2
 d)

25. sin 200o + cos 200o is

 a)negative
 b)positive
 c)zero
 d)zero or positive

26. If ABCD is a cyclic quadrilateral, then

 a)sin (A + C) = 1
 b)sin (B + C) = 1
 c)cos (A + C) = 1
 d)cos (A + C) = -1

27. The value of cos 20o cos 40o cos 60o cos 80o is equal to

 a)3/8
 b)1/8
 c)1/16
 d)3/16

28. The value of sin 2π8 + sin23π8+ sin25π8 + sin27π8 is

 a)1
 b)2
 c)118
 d)218

29. If A = 130o and x = sin A + cos A, then

 a)x > 0
 b)x < 0
 c)x = 0
 d)x 0

30. If A = sin20θ + cos48θ, then for all values of θ:

 a)A 1
 b)0 < A < 1
 c)1 < A < 3
 d)none of these

31. If in a triangle ABC, tan A + tan B + tan C = 6 and tan A + tan B = 2, then the triangle is

 a)right angled isosceles
 b)acute angled isosceles
 c)obtuse angled
 d)equilateral

32. If sin x + sin2 x = 1, then cos2 x + cos4 x is equal to

 a)1
 b)-1
 c)0
 d)2

33Cos21oSin21ocos21o+sin21o is equal to

 a)tan 21o
 b)tan66o
 c)tan 24o
 d)tan 69o

34. Which of the following is correct

 a)tan 1 > tan 2
 b)tan 1 < tan 2
 c)tan 1 = tan 2
 d)tan 1 = 2/3 tan 2

35. if tan a = mm+1 , tan b = 12m+1, then a + b is equal to

 a)π2
 b)π4
 c)π6
 d)none of these

36. If angle B of the triangle ABC is 45o, then (1 + cot A) (1 + cot C) is equal

 a)-1
 b)0
 c)1
 d)2

37. In a triangle ABC, cosec A (sin B cos C + cos B sin C) is equal to

 a)c/a
 b) a/c
 c)1
 d)none of these

38. If e π2 < θ <π2, then

 a)cos log θ > log cos θ
 b)cos log θ < log cosθ
 c)cos log θ = log cosθ
 d)cos log θ = 2/3 log cosθ

39. If a and b be between 0 andπ2 and if cos (a +b) = 12/13 and sin (a – b) = 3/5, then sin2a is equal to

 a)16/15
 b)0
 c)56/65
 d)64/65

40. The value of cosπ7 cos 2π7 cos 4π7 is

 a)-14
 b)-116
 c)-316
 d)-18

41. If cos (a + b) = 0, then sin (a + 2b) is equal to

 a)- sin a
 b)cos a
 c)sin b
 d)cos b

42. If tan θ = 1/7 and tan φ = 1/3, then cos 2 θ equals

 a)4 sin φ
 b)2 sin φ
 c)sin 3 φ
 d)sin 4 φ

43. cos 52o + cos 68o + cos 172o =

 a)0
 b)1
 c)2
 d)none of these

44. sinπ10 sin 13π10 is equal to

 a)12
 b)- 12
 c)-14
 d)1

45. If sin (A + B + C) = 1, tan (A – B) = 1/3 and sec (A + C) = 2 then,

 a)A = 120o, B = 60o, C = 0o
 b)A = 60o, B = 30o, C = 0o
 c)A = 90o, B = 60o, C = 30o
 d)none of these

46. If tan A = 12 , tan B = 13, then tan ( 2A + B) is equal to

 a)1
 b)2
 c)3
 d)4

47. tan x is periodic with period

 a)π2
 b)π
 c)2π
 d)3π2

48. The roots of the equation 4x2 - 25x + 1 = 0 are

 a)sin 36o,sin 18o
 b)sin 18o,cos 36o
 c)sin 36o,cos18o
 d)cos18o,cos 36o

49. In a right angled triangle, the hypotenuse is four times as long as the perpendicular drawn to it from the opposite vertex. One of the acute angle is

 a)15o
 b)30o
 c)45o
 d)none of these

50. The number of distinct solutions of sin 5 θ cos 3 θ = sin 9 θ cos 7 θ in [0, π2] is

 a)4
 b)5
 c)8
 d)9