1. ∫cos2x(sinx+cosx)2dx=
2. ∫exloga.exdx=
3. ∫|x|3dx=
4. ∫xdx1+4x=
5. If ∫2x1−4xdx=Ksin−1(2x), then k is
6. ∫(sinx)3/2(cosx)7/2dx=
7. ∫log(x+x2+4x2+4dx=
8. ∫(log(logx) + (logx)−1)dx=
9. ∫cosxcos(x−a)dx (f)cosxcos(x-a)dx
10. ∫sin2xdx3+4sin2x=
11. ∫|x|dx
12. ∫1f(x)dx=log(f(x))2+c,then f(x) is
13. ∫1ex+e−xdx=
14. ∫(tan1xx)2dx=
15. ∫d(x2+1)x2+2=
16. ∫ex(1−x1+x2)2dx=
17. Anti-derivative of xcos2x is
18. Integral of 1+x2 w.r.t.x2 is
19. If f(x) =∫cot4+13cot3x-cotx and f(π2) = π2, then f(x) is
20. ∫e−logxdx=
21. Integral of f (x) = 1+x2 with respect to x2 is
22. ∫log(x+1)−logxx(x+1)dxequal to
23. The value ∫sec3xdx will be
24. ∫x2+1x(x2−1)dx is equal to
25. ∫(ealogx+exloga)dx is equal to
26. ∫1+sinx·f(x)dx=23(1+sinx)3/2+C then f (x) =
27. ∫cotxsinxdx=
28. ∫dxx+x =
29. ∫axxdxequals to
30. If ddx(f(x))= g (x) then ∫f(x)g(x)dx=
31. ∫tanx2sinxcosxdx=
32. ∫ex(1+sinx)1+cosxdx=
33. If ∫2x1−4xdx=K sin−1(2x) then K =
34. ∫etan−1x[1+x1+x2]dxis
35. ∫xx(1+logx)dx=