Question Bank No: 2

1. If w is an imaginary cube root of unity, then |22ww2111110|is

 a)1
 b)-1
 c)0
 d)none of these

2Δ=|1a1bc1b1ca1c1ab|isequalto

 a)abc
 b)0
 c)1abc
 d)none of these

3. The value of |3i2i2i543ii2i7|is

 a)2i+12
 b)2i-12
 c)-2i-12
 d)-2i+12

4. If =|abbccabccaabcaabbc|then

 a)=1
 b)=0
 c)=1
 d)none of these

5. The value of the determinant | 1 a b + c 1 b c + a 1 c a + b | is

 a)a+b+c
 b)0
 c)1
 d)abc

6. If A and B are square matrix of same order, then (A+B)2=A2+2AB+B2if

 a)AB=BA
 b)A=-B
 c)A=A'
 d)2A=-B

7. If a matrix is symmetric as well as skew symmetric then

 a)A is a diagonal matrix
 b)A is a null matrix
 c)A is a unit matrix
 d)A is a triangular matrix

8. If A is square matrix then A-A' is

 a)unit matrix
 b)null matrix
 c)A
 d)a skew symmetric matrix

9. If A is square matrix then A+A' is

 a)unit matrix
 b)null matrix
 c)A
 d)symmetric matrix

10. If A=[100010ab1]thenA2isequalto

 a)unit matrix
 b)null matrix
 c)A
 d)-A

11. If the matrix AB is zero then

 a)A=0 or B=0
 b)A=0 and B=0
 c)It is not necessary that either A=0 or B should be zero
 d)All the above statements are wrong

12. If A and B are arbitrary square matrices of same order then

 a)(AB)1=A1B1
 b)(A1)1(B1)1=B1A1
 c)(A+B)1=A1B1
 d)(AB)1=B1A1

13. If A and B are two matrics of the same type, then (A+B)1isequalto

 a)A1+B1
 b)A1+B
 c)A+B1
 d)A+B

14. If A=[1235]thenA1is

 a)[5231]
 b)[511211311111]
 c)[511211311111]
 d)[5231]

15. The order of the matrix A is 3×5 and that of B is 2×3. The order of the matrix BA is

 a)2×3
 b)3×2
 c)2×5
 d)5×2

16. If A =[x110]andA2=IthenX=

 a)0
 b)1
 c)2
 d)4

17. If for the matrix A, A5=IThenA1

 a)A2
 b)A3
 c)A
 d)none of these

18. If A=[3457]thenA(adjA)=

 a)I
 b)|A|
 c)|A|I
 d)none of these

19. If A =[4211]then(A2I)(A3I)=

 a)A
 b)I
 c)0
 d)5I

20. If A=[1001]thenA4=

 a)[1001]
 b)[1100]
 c)[0011]
 d)[0110]

21. If D=|11111+x1111+y| for xy0, then D is divisible by

 a)both x and y
 b)x but not y
 c)y but not x
 d)neither x nor y

22. The value of |cos(α+β)sin(α+β)cos2β)sinαcosαsinβcosαsinαcosβ|is independent of

 a)α
 b)β
 c)α,β
 d)none of these

23. If the equations a(y+z)=x,b(z+x)=y,c(x+y)=z have nontrivial solutions, then 1 1 + a +11+b+11+c=

 a)1
 b)2
 c)-1
 d)-2

24. If x=abc,y=bca,z=cab then

 a)xy+yz+zx=0
 b)xy+yz+zx=-1
 c)xy+yz+zx=1
 d)x+y+z=1

25. If A = [410122],B=[20131x],C=[121] and D=[15+x1] such that (2A-3B)C=D, then x=

 a)3
 b)-4
 c)-6
 d)6

26. If A=[1121],B=[x1y1] and (A+B)2=A2+B2 , then x+y=

 a)2
 b)3
 c)4
 d)5

27[1x1][1322511532][12x]=0 if x=

 a)-7
 b)-11
 c)-4
 d)-14

28. The homogeneous system of equations [ 2 a + b + c + d ab + cd a + b + c + d 2 ( a + b ) ( c + d ) ab ( c + d ) + cd ( a + b ) ab + cd ab ( c + d ) + cd ( a + b ) 2 abcd ] [ x y z ] = 0 has nontrivial solutions only if

 a)a+b+c+d=0
 b)ab+cd=0
 c)ab(c+d)+cd(a+b)=0
 d)for any a,b,c,d

29. If A=[1234],then A45A3A24AI=

 a)0
 b)I
 c)A
 d)A+I

30. If A=[433101443], then A1=

 a)AT
 b)A3
 c)A2+AI
 d)A2AI

31. If the matrix [12x419236]is singular, then x=

 a)-5
 b)-4
 c)92
 d)92

32. If 3A=[122212x2y] and ATA=AAT=I,then xy=

 a)-1
 b)1
 c)2
 d)-2

33. If A=[2142],then I+2A+3A2+.....

 a)[4140]
 b)[3141]
 c)[5283]
 d)[5238]

34. If A =[122221211], then A1=

 a)A
 b)AT
 c)19A
 d)19AT

35. If A=[1321212], then I+A+A2+.....=

 a)[1314]
 b)27[1314]
 c)27[1314]
 d)undefined

36. If A23A+2I=0,then

 a)A is singular
 b)A1=3I+A2
 c)A1=I3A2
 d)A1=3IA2

37. If A=[1321212],then A3=

 a)A4
 b)A8
 c)I4
 d)I8

38. Let A= [1234]andB=[a00b], a, bN.Then

 a)there exists exactly one B such that AB=BA
 b)there exists infinitely many B's such that AB=BA
 c)there cannot exist any B such that AB=BA
 d)there exist one than I but finite bumebr of B's such that AB=BA

39. If A and B are 3×3 matrices such that A2B2=(AB)(A+B),then

 a)either A or B is zero matrix
 b)either A or B is unit matrix
 c)A=B
 d)AB=BA

40. If a1,a2,a3.......are in G.P. then Δ = | log a n log a n + 1 log a n + 2 log a n + 3 log a n + 4 log a n + 5 log a n + 6 log a n + 7 log a n + 8 | = 0

 a)0
 b)1
 c)2
 d)4

41. If A=[1011], then An=

 a)2n1A(n1)I
 b)nA(n1)I
 c)2n1A+(n1)I
 d)nA+(n1)I

42. The system of equations α x + y + z = α 1 , x + α y + z = α 1 , x + y + α z = α 1 has no solution if αis

 a)-2 or 1
 b)-2
 c)1
 d)-1

43. If a2+b2+c2=2 and f(x)=|1+a2x(1+b2)x(1+c2)x(1+a2)x1+b2x(1+c2)x(1+a2)x(1+b2)x1+c2x|, then f(x)is a polynomial of degree

 a)0
 b)1
 c)2
 d)3

44. If A2A+I=0,thenA1=

 a)A
 b)A+I
 c)I-A
 d)A-I

45. If A=[111213111] and A3=110[42250α123], then α=

 a)-2
 b)5
 c)2
 d)-1

46. If A=[001010100], Then

 a)A is zero matrix
 b)A2=I
 c)A1does not exist
 d)A=(-1)I

47. If 1, ω,ω2are the cube root of unity. then Δ=|1ωnω2nωnω2n1ω2n1ωn|=

 a)0
 b)1
 c)ω
 d)ω2

48. If A=[abba] and A2=[αββα],then

 a)α=a2+b2,β=ab
 b)α=a2+b2,β=2ab
 c)α=a2+b2,β=a2b2
 d)α=2ab,β=a2+b2

49. If the system of equations x + 2 ay + az = 0 , x + 3 by + bz = 0 , x + 4 cy + cz = 0 has non zero solution, then a, b, c are in

 a)A.P.
 b)G.P.
 c)H.P.
 d)none of these

50. If |aa21+a3bb21+b3cc21+c3|=0 and the vectors (1, a, a2),(1,b,b2),(1,c,c2)are noncoplanar, then abc=

 a)2
 b)-1
 c)1
 d)0