1. If w is an imaginary cube root of unity, then |22w−w21111−10|is
2. Δ=|1a1bc1b1ca1c1ab|isequalto
3. The value of |3i2i2i54−3ii2i7|is
4. If ∝=|a−bb−cc−ab−cc−aa−bc−aa−bb−c|then
5. The value of the determinant | 1 a b + c 1 b c + a 1 c a + b | is
6. If A and B are square matrix of same order, then (A+B)2=A2+2AB+B2if
7. If a matrix is symmetric as well as skew symmetric then
8. If A is square matrix then A-A' is
9. If A is square matrix then A+A' is
10. If A=[100010ab−1]thenA2isequalto
11. If the matrix AB is zero then
12. If A and B are arbitrary square matrices of same order then
13. If A and B are two matrics of the same type, then (A+B)1isequalto
14. If A=[123−5]thenA−1is
15. The order of the matrix A is 3×5 and that of B is 2×3. The order of the matrix BA is
16. If A =[x110]andA2=IthenX=
17. If for the matrix A, A5=IThenA−1
18. If A=[3457]thenA(adjA)=
19. If A =[4211]then(A−2I)(A−3I)=
20. If A=[1001]thenA4=
21. If D=|11111+x1111+y| for xy≠0, then D is divisible by
22. The value of |cos(α+β)−sin(α+β)cos2β)sinαcosαsinβ−cosαsinαcosβ|is independent of
23. If the equations a(y+z)=x,b(z+x)=y,c(x+y)=z have nontrivial solutions, then 1 1 + a +11+b+11+c=
24. If x=ab−c,y=bc−a,z=ca−b then
25. If A = [4101−22],B=[20−131x],C=[121] and D=[15+x1] such that (2A-3B)C=D, then x=
26. If A=[1−12−1],B=[x1y−1] and (A+B)2=A2+B2 , then x+y=
27. [1x1][1322511532][12x]=0 if x=
28. The homogeneous system of equations [ 2 a + b + c + d ab + cd a + b + c + d 2 ( a + b ) ( c + d ) ab ( c + d ) + cd ( a + b ) ab + cd ab ( c + d ) + cd ( a + b ) 2 abcd ] [ x y z ] = 0 has nontrivial solutions only if
29. If A=[1234],then A4−5A3−A2−4A−I=
30. If A=[−4−3−3101443], then A−1=
31. If the matrix [12x4−1923−6]is singular, then x=
32. If 3A=[12221−2x2y] and ATA=AAT=I,then xy=
33. If A=[21−4−2],then I+2A+3A2+.....∞
34. If A =[12−2−221211], then A−1=
35. If A=[−132−1212], then I+A+A2+.....∞=
36. If A2−3A+2I=0,then
37. If A=[−132−1212],then A3=
38. Let A= [1234]andB=[a00b], a, b∈N.Then
39. If A and B are 3×3 matrices such that A2−B2=(A−B)(A+B),then
40. If a1,a2,a3.......are in G.P. then Δ = | log a n log a n + 1 log a n + 2 log a n + 3 log a n + 4 log a n + 5 log a n + 6 log a n + 7 log a n + 8 | = 0
41. If A=[1011], then An=
42. The system of equations α x + y + z = α − 1 , x + α y + z = α − 1 , x + y + α z = α − 1 has no solution if αis
43. If a2+b2+c2=−2 and f(x)=|1+a2x(1+b2)x(1+c2)x(1+a2)x1+b2x(1+c2)x(1+a2)x(1+b2)x1+c2x|, then f(x)is a polynomial of degree
44. If A2−A+I=0,thenA−1=
45. If A=[1−1121−3111] and A3=110[422−50α1−23], then α=
46. If A=[00−10−10−100], Then
47. If 1, ω,ω2are the cube root of unity. then Δ=|1ωnω2nωnω2n1ω2n1ωn|=
48. If A=[abba] and A2=[αββα],then
49. If the system of equations x + 2 ay + az = 0 , x + 3 by + bz = 0 , x + 4 cy + cz = 0 has non zero solution, then a, b, c are in
50. If |aa21+a3bb21+b3cc21+c3|=0 and the vectors (1, a, a2),(1,b,b2),(1,c,c2)are noncoplanar, then abc=