1. If ax=bc,by=ca,cz=ab,then x 1 + x + y 1 + y + z 1 + z =
2. If 1, log9(31−x+2),log3(4·3x−1)are in A.P., then x=
3. The number of solutions of the equation log4(x−1)=log2(x−3)is
4. The number of values of x such that log32,log3(2x−5),log3(2x−72) are in A.P. is
5. The number log27 is
6. The number of rational roots of the equation x34(log2x)2+log2x−54=2 is
7. The number of solutions of the equation log ( 2 x + 3 ) ( 6 x 2 + 23 x + 21 ) + log ( 3 x + 7 ) ( 4 x 2 + 12 x + 9 ) = 4 is
8. The number of solutions of log7log5(x+5+x)=0 is
9. If log0.3(x−1)<log0.09(x−1), then x∈
10. For 0<a<x,the minimum value of logax+logxa is
11. If n is a natural number such that n=p1a1·p2a2·p3a3.....pkak, where p1, p2, ......pkare distinct primes, then log n≥
12. If x>1,the least value of 2log10x−logx0.01 is
13. If a>0.,2logxa+logaxa+3loga2xa=0,then x=
14. If 4x−3x−12=3x+12−22x−1 then x=
15. If 4log93+9log24=10logx83, then x=
16. If a, b, c are distinct positive numbers different from 1 such that (logbalogca−logaa)+(logcb·logab−logbb)+(logaclogbc−logcc)=0, then abc=
17. Given log10343=2.5353, the least integer n such that 7n>1010 is
18. ∑r=2431logrn=
19. The number of solutions of log2 (x+5) = 6 – x is
20. The number of log2 7 is
21. If 2 log (x + 1) – log (x2 - 1) = log2, then x equals,