Question Bank No: 1

1. In order that a relation R defined in a non-empty set A is an equivalence relation, it is sufficient to show that R is

 a)reflexive
 b)symmetric
 c)transitive
 d)reflexive, symmetric and transitive

2. If R _ A×B and S_ B ×C be two relations, then (SOR)1 is equal to

 a)S1oR1
 b)R1oS1
 c)SoR
 d)None of these

3. The void relation in a set A is

 a)reflexive
 b)symmetric and transitive
 c)reflexive and transitive
 d)reflexive and symmetric

4. Let R be a reflexive relation defined in a finite set having n elements and let there be k ordered pairs in R. Then

 a)k n
 b)k n
 c)k = n
 d)None of these

5. Let A be the set of all children in the world and R be a relation in A defined by xRy if x and y have same sex. Then R is

 a)not reflexive
 b)not symmetric
 c)not transitive
 d)an equivalence relation

6. If A is the set of even natural numbers less than 8 and B is the set of all prime numbers less than 7, then the number of relations from A to B is

 a)29
 b)92
 c)32
 d)29 – 1

7. The relation R = {(1, 1), (2, 2), (3, 3) ont he set {1, 2, 3} is

 a)Symmetric only
 b)reflexive only
 c)an equivalence relation
 d)transitive only

8. Let A = {2, 3, 4, 5, ...., 16, 17, 18}. Let = be the equivalence relation on A × A, the cartesian product of A and A, defined by (a, b) (c, d) if ad = bc. Then the number of ordered pairs in the equivalence class of (3, 2) is

 a)4
 b)5
 c)6
 d)7

9. Let A = {a, b, c} and B = {1, 2}. Consider a relation R defined from set A to set. Then R is equal to a subset of

 a)A
 b)B
 c)A × B
 d)B × A

10. A relation from P to Q is

 a)A universal set of P × Q
 b)P × Q
 c)an equivalent set of P × Q
 d)a subset of P × Q

11. If R _ A × Band S _ B × C be two relations, then (SOR)1 is equal to

 a)S1oR1
 b)RoS
 c)R1oS1
 d)None of these

12. Which one of the following relations in Z is an equivalence relation?

 a)aR1b a b
 b)aR2b a/b
 c)aR3b a=b
 d)aR4b a > b

13. Let R be an equivalence relation in a finite set A having n elements. The number of ordered pairs in R is

 a)less than n
 b)less than or equal to n
 c)greater than n
 d)greater than or equal to

14. Let R be a relation defined in the set of natural numbers N as R = {(x, y) : x, y N 2x + y = 41}. Which of the following is true?

 a)R is reflexive
 b)R is symmetric
 c)R is transitive
 d)At least one is false

15. Which of the following relations in R is an equivalence relation?

 a)xR1y |x| = |y|
 b)xR2y x y
 c)xR3y x/y
 d)xR4y x < y

16. Let S be a non-empty set. In P(S), let R be a relation defined as ARB A B φ. The relation R is

 a)reflexive
 b)symmetric
 c)transitive
 d)None of these

17. If R be an anti-symmetric relation in a set A such that (a, b), (b, a) R, then

 a)a b
 b)a b
 c)a = b
 d)None of these

18. Let A = {1, 2, 3}, B = {1, 3, 5}. If relation R from A to B is given by {(1, 3), (2, 5), (3, 3)}, then R1 is

 a){(3, 3), (3, 1), (5, 3)}
 b){(1, 3), (2, 5), (5, 3)}
 c){(1, 3), (5, 2)}
 d)None of these

19. Two points A and B in a plane are related if OA = OB, where O is a fixed point. This relation is

 a)reflexive but not symmetric
 b)symmetric but not transitive
 c)an equivalent relation
 d)None of these

20. Let R be a reflexive relation in a finite set having n elements and let there be m ordered pairs in R. Then

 a)m n
 b)m n
 c)m = n
 d)None of these

21. The domain of the function f(x)=x 1+2(x+4)0.52(x+4)0.5+ 5 (x+4)0.5 is

 a)R
 b)(-4, 4)
 c)(0, )
 d)(-4, 0) (0, )

22. If f(x) = x2 + 4x + 1, then

 a)f(x) = f (-x) for all x
 b)f(x) > 1 for all x 0
 c)f(x) 1 for all x 0
 d)f(x) 1 for all x 0 or x -4

23. No. of onto functions defined from the set {1, 2, 3, ......, 10} to the set {1, 2} is

 a)1024
 b)1010
 c)1022
 d)None of these

24. If f : A B is a bijection, then

 a)o(A) o(B)
 b)o(B) o(A)
 c)o(A) < o(B)
 d)None of these

25. A mapping f : X Y is one-one if

 a)x1 = x2 f(x1) = f(x2)
 b)f x1 = fx2 x1 = x2
 c)f x1 f x2 for all x1, x2 X
 d)None of these

26. If f : R r and g : R R are defined by f(x) = 2x + 3 and g(x) = x2 + 7, then the values of x such that g (f(x)) = 8 are

 a)1, 2
 b)-1, 2
 c)-1, -2
 d)1, -2

27. Let f(x) = x2 and g(x) = x, then

 a)(gof) (-2) = 2
 b)(fog) (2) = 4
 c)(gof) (2) = 4
 d)(fog) (3) = 6

28. The fundamental period of the function f(x) = 2 cos 13 (x -π) is

 a)6π
 b)4π
 c)2π
 d)π

29. If f(x) =xx1, then f(a)f(a+1) is equal to

 a)f(-a)
 b)f(1/a)
 c)f(a2)
 d)f(aa1)

30. Mapping f: R R which is defined as f(x) = cos x, x R is

 a)Neither one-one nor onto
 b)one-one
 c)onto
 d)one-one and onto

31. If f(x) =xx1, x R {1}, then f1(x) is equal to

 a)xx1
 b)x1x
 c)1xx
 d)x1x

32. Let f(x) = x2 x + 1, x 1/2, then the solution of the equation f1(x) = f(x) is

 a)x = 1
 b)x = 2
 c)x = 1/2
 d)None of these

33. If a function f : [2,)BB defined by f(x) =x2 4x + 5 is a bijection, then B is equal to

 a)R
 b)[1,)
 c)[4,)
 d)[5,)

34. The inverse of the function f(x) =10x10x10x+10x+ 1 is

 a)f1(x) = log10x2x
 b)f1(x) =12log10x2x
 c)f1(x) =12 log10x1x
 d)None of these

35. Let f : R R be a function defined by f(x) = cos (2x + 7). This function is

 a)injective
 b)surjective
 c)bijective
 d)None of these

36. The function f(x) = cos x, x R is

 a)an even function
 b)an odd function
 c)a power function
 d)None of these

37. Let A and B be two finite sets having m and n elements respectively. The total number of mappings from A to B is

 a)mn
 b)2mn
 c)nm
 d)mn

38. If f(x) = 5x, x R, then f(0), f(1), f(2), .... are in

 a)A. P
 b)G.P
 c)H.P
 d)None of these

39. The domain of the function f(x) = |x| is

 a){-3}
 b)R {-3}
 c)R {3}
 d)None of these

40. The range of the function f(x) =x22x is

 a)R
 b)R -{1}
 c){1}
 d)R - {-1}

41. If f(x)=2x+2x2 then f(x=y) F(x-y) is equal to

 a)12[f(x+y)+f(xy)]
 b)12[f(2x)+f(2y)]
 c)12[f(x+y).f(xy)]
 d)none of these

42. The domain of the function f(x) = 1|x||x|2 is

 a)(,1)(1,)
 b)(,2)(2,)
 c)(2,1)[1,2)
 d)None of these

43. If f(x+2y, x-2y) = xy then f(x,y) is

 a)x2y28
 b)x2y24
 c)x2+y24
 d)x2y22

44. If f(x)=(axn)1n then f (f(x)) is

 a)x1n
 b)xn
 c)ax
 d)x

45. If f is a function such that f(0)=2, f(1)=3 and f (x+2)=2 f(x) f(x+1) for every real x then f(5) is

 a)7
 b)13
 c)1
 d)5

46. The function f(x) = xex1+x2+1is

 a)an odd funtion
 b)an even function
 c)neither even or odd function
 d)a periodic function

47. The range of the function f(x) = 53x2 is

 a)(,0) [53,)
 b)(,0)(53,)
 c)(,0)(53,]
 d)none of these

48. If f(x).f(y)=f(x)+f(y)2x,yR and if f(x) is not a constant function, then the value of f(1) is

 a)1
 b)2
 c)0
 d)-1

49. The domain of the function f(x)=log10(3xx) is

 a)(0,32)
 b)(0,3)
 c)(-,32)
 d)(0,32]

50. If 3 f(x)+5 f(1x)=1x3 x(0)R,thenf(x)=

 a)114(3x+5x6)
 b)114(3x+5x6)
 c)114(3x+5x+6)
 d)114(3x5x+6)