1. If a and b are two unit vectors inclined at an angle θ to each other, then |a→+b→| < 1 if
2. Volume of parallelopiped with sides given by OA→ 2i^−3j^+k^, OB → = i ^ + j ^ − k ^ , OC→=3i^−k^is
3. The area of parallelogram constructed on the vectors a→=m→+2n→ and b→=2m→+3n→ where m→ and n→ are unit vectors forming an angle of 600, is
4. Modulus of sum of three mutually perpendicular unit vectors is
5. If a→=2i^−j^+6k^ and b→=i^+5j^+11k^, then a→ ×b→is a vector
6. The position vectors of the points A and B w.r.t an origin are a^+i^,3j^−2k^and b^=3i^+j^−2k^ respectively. If P is a point on AB, then OP→which bisects <AOB is
7. The vectors 2i^+3j^,5i^ +6 j^and 8i^+λj^ have their initial points at (1, 1). The value of λso that the vectors terminate on one straight line is
8. The points (2, -1, 1), (1, -3, -5), (3, -4, -4) are vertices of a triangle which is
9. If a→,b→,c→,d→ are position vectors of vertices A, B, C, D of a quadrilateral ABCD and a→+c→= b→,d→, then ABCD is a
10. If a→andb→ are two vectors such that a→.b→ = 0 and a→b→ = 0→, then
11. Vectors 2i^−j^+k^ and 2i^−4j^+λk^ are perpendicular if λ=
12. The vector b→which is collinear with vector a→ =(1,2,-1) and satisfies a→.b→= 5 is
13. If <a→,b→=θ and |a→×b→|=|a→.b→| then θis
14. If θis the angle between two vectors a→ and b→then a→.b→>0 only if
15. The vector18i^−38j^+14k^ is
16. If the cross product of two non-zero vectors is zero,then the vectors are
17. If |a→|=|b→| then (a→+b→).(a→−b→)=
18. If |a→×b→|=|a|→|b→| then a→ and b→ are
19. If b→ is a unit vector, then (a→.b→)b→+b→×(a→×b→)=
20. The vectors a→ = 5i^+4j^ and b→= 20 i^−16j^are
21. Let OA¯ =a¯,OB¯ =10a¯+2b¯andOC¯=b¯whereO,A,Carenoncollinear.LetPdenotetheareaofthequadrilateralOABCandQdenotetheareaoftheparallelogramwithOAandOCasadjacentsides,thenpq is equal to
22. If a¯+b¯+c¯=0and|a¯|=3,|b¯|=5,|c¯|=7thentheanglebetweena¯andb¯
23. If a¯,b¯,c¯,d¯arethepositionvectorsofpointsA,B,CandDsuchthatnothreeofthemcollinearanda+c=b+dthenABCDis
24. The sum of two unit vectors is a unit vector, The magnitude of their difference is
25. a¯,b¯,c¯arethreevectorssuchthatc¯=a¯+b¯andanglebetweena¯andb¯isΠ2then
26. Let a¯,b¯,c¯bethreenonzerovectors,thena¯.b¯=a¯.c¯holds
27. If the vector 2i¯-j¯+k¯, i¯+2j¯-3k¯ and 3i¯-λj¯+5k¯arecoplanarthenλ
28. The projection of the vector i¯-2j¯+k¯ on the vector 4i¯-4j¯+7k¯ is
29. The vector 2i¯-j¯+k¯,i¯-3j¯-5k¯ and 3i¯−4j¯−4k¯arethesidesofatrianglewhichis
30. Area of a parrallelogram whose diagonals are given by the vectors 3i+j-2k and i-3j+4k is
31. The angle between the vectors 2i¯+3j¯+k¯ and 2k¯-j¯-k¯ is
32. If a¯andb¯aretwovectorssuchthata¯−b¯=0anda¯×b¯=0→then
33. If |∝¯+β¯|=|∝¯−β¯|then
34. Let a¯andb¯betwounitvectors.Let∝betheanglebetweenthem,thena¯+b¯isaunitvectorif
35. If Q is the angle between two vectors a→andb→then|a¯×b¯a¯×b¯|equal
36. If a¯,b¯,c¯areunitvectorssuchthata¯+b¯+c¯=0thenthevalueofa¯ .b¯+b¯.c¯+c¯.a=¯
37. If |a¯|=6,|b¯|=8,|a¯−b¯|=10then|a¯+b¯|isequalto
38. Volume of the parallel piped whose coterminus edges are 2i¯-3j¯+4k¯, i¯+2j¯-2k¯, 3i¯-j¯+k¯ is
39. If (a¯×b)¯2+(a→b)→2=144and|a→|=4then|b→|=
40. Let a¯=2i¯+j¯+k¯,b¯=i¯+2j¯-k¯andaunitvectorc¯becoplanarifc¯isperpendiculartoa¯then c→=
41. The area of the parallelogram whose adjacent sides are 2i¯-3k¯ and 4j¯+2k¯ is
42. The angle between the vectors a¯×b¯andb¯×a¯is
43. Area of the parallelogram whose diagonals are i¯+2j¯+3k¯ and -i¯−2j¯+k¯is
44. If |a→|=3|b→|=4and|a¯+b¯|=5then|a¯−b¯|=
45. For any two vectors u→andv→(u¯.v¯)2+(u¯.v¯)2=
46. If a¯isaunitvector⊥rtob¯andc¯thenthesecondunitvector⊥rtob¯andc¯is
47. If a¯,b¯,c¯arenoncoplanarvectorsthenthevectors5a¯+6b¯+7c¯,7a¯−8b¯+9c¯and3a¯+20b¯+5c¯are
48. The unit vector parallel to the resultant of the vectors 2i¯+3j¯-k¯ and 4i¯-3j¯+2k¯ is
49. If G is the centroid of a triangle ABC then GA→+GB→+GC→
50. The unit vector ⊥rtoeachofthevectorsi→+2j→+3k→and−3i→−2j→+k→is